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About me

e B.Scin Mediatechnology and -Design in Hagenberg, Austria (2010)
e Masterin JKU Linz, Pervasive Computing (2014)
e PhDin JKU Linz (2018)

o Austrian Research Institute for Al, Vienna

o Computational Perception Institute, Linz

e Sony CSL Paris (since 2018)
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Objectives

e Understanding of basic working of Neural Networks
e Training procedure (Backpropagation)

e |Intuitive understanding of training dynamics and problems
o Improvements to counter problems

e Historical evolution of Neural Networks
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Deep Learning

e Meanwhile umbrella term for whole field of Neural Networks
e Attributed to Geoffrey Hinton, but was already used earlier

e Became popular as Neural Networks actually became deep

'

o approx.2010-2015
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Deep Learning

e Became popular as Neural Networks actually became deep

o approx.2010-2015
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Neural Network Evolution - Milestones

Perceptron (1957)

Multi-Layer Perceptron (1958)

Convolutional Neural Networks (1982/1998)
Recurrent Neural Networks (1982/1986/1990)
Backpropagation (1986)

Long-short Term Memory Networks (1997)
Generative Adversarial Networks (2014)
Transformers (2017)

Diffusion Models (2021)
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Neural Network Evolution

Part 1 (Basics)




Neural Network Evolution - Part 1 (Basics)

Perceptron (1957)

Multi-Layer Perceptron (1958)
Convolutional Neural Networks (1982/1998)
Backpropagation (1986)

Going Deeper (2010-2015)
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Perceptron




Perceptron (1957)

Inputs  Weights Net input Activation
function function

w
@‘@ f output

Frank Rosenblatt: The perceptron - A perceiving and recognizing automaton.
Cornell Aeronautical Laboratory, Report No. 85-460-1, January 1957
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y = oc(Wx + b)
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y = o(Wx + b)

Stefan Lattner, Introduction to Deep Learning, Al-PHI Meetup, Spring 2024



Perceptron (1957)

Inputs  Weights Net input Activation
function function

output
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Perceptron (1957)

Inputs  Weights Net input Activation
function function
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Perceptron (1957)

Inputs  Weights Net input Activation
function function
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Perceptron (1957)
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Perceptron (1957)
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Perceptron (1957)

Inputs  Weights Net input Activation
function function
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Perceptron (1957)

Inputs  Weights Net input Activation
function function
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Perceptron (1957)

Inputs  Weights Net input Activation
? function function
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Perceptron (1957)
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Bias
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Bias
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Perceptron (1957)

Inputs  Weights Net input Activation
function function
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Perceptron (1957)
X
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Perceptron (1957)
W
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Perceptron (1957)

Stefan Lattner, Introduction to Deep Learning, Al-PHI Meetup, Spring 2024




Perceptron (1957)
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Perceptron (1957)
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Perceptron (1957)
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Perceptron (1957)

y = c(Wx + b)

Stefan Lattner, Introduction to Deep Learning, Al-PHI Meetup, Spring 2024



Perceptron (1957)
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y = c(Wx + b)

btw. 'y = (WX + b)
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y = o(Wx + b)
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Perceptron

e Brain-inspired
e Represented as matrix multiplication + bias + activation function
e Basis of most neural networks computation

Btw.

e GPU!

e Camera rotation — Matrix multiplication W X

e Mainly: Wide hardware “pathway” between HD and GPU
compared to HD and CPU

BtefdnRatenbitatit idvhiptice porbeepA paroéng il dtidl Mdeegnizifgrangd¥®24on. Cornell Aeronautical Laboratory, Report No. 85-460-1, January 1957



Multi-Layer Perceptron




MNIST Filters
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MNIST Classification
1
Output Layer | Q

Hidden Layer

'ﬂ

Input Layer
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MNIST Classification

Output Layer

Hidden Layer

Input Layer
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MNIST Classification

Output Layer

Hidden Layer

Input Layer
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Multi-Layer Perceptron

Output Layer

Hidden Layer

Input Layer

Frank Rosenblatt, The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain, (1958)
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Multi-Layer Perceptron

Demo:

https://www.3blue1brown.com/lessons/neural-network-analysis
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https://www.3blue1brown.com/lessons/neural-network-analysis

Multi-Layer Perceptron

e Going deeper
e Hierarchical feature representation
e “Dense feed-forward NN”
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Convolutional Neural Networks




MNIST Classification - Convolutional
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MNIST Classification - Convolutional
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MNIST Classification - Convolutional
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MNIST Classification
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MNIST Classification - Convolutional
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MNIST Classification - Convolutional

9
Average Pooling @ :
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MNIST Classification - Convolutional
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Convolutional Neural Network

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28
32x32 S2: f. maps
6@14x14

Yann LeCun

\
\ Full conr‘nection Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner:
Gradient-based learning applied to document recognition. Proc. IEEE 86(11): 2278-2324 (1998)
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Convolutional Neural Networks

Hierarchical Feature Learning
Translation Invariance

Reduced Parameter Count

Robust to Variations and Distortions
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Convolutional Neural Network

e LeNet5usesTanh Tanh

activation function

Yann LeCun

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner:
Gradient-based learning applied to document recognition. Proc. IEEE 86(11): 2278-2324 (1998)
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Neocognitron

Neocognitron A New Algorithm 459
I

Fig 4 Schematic diagram 1llustrating the interconnections between layers in the neocognitron
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Kunihiko Fukushima, Sei Miyake:
Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position.
Pattern Recognit. 15(6): 455-469 (1982)
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Neocognitron

Kunihiko Fukushima

Fig 8 Anexample of the interconnections between cells and the response of the cells after completion of the
self-organization

Kunihiko Fukushima, Sei Miyake:
Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position.
Pattern Recognit. 15(6): 455-469 (1982)
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Backpropagation




Gradient Descent

For any differentiable function, we can ask how to change any parameter in order to
decrease the function.

E.g., for

y = c(Wx + b)
e = abs(y —§)

where W and b are the parameters.
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Gradient Descent
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Gradient Descent
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Gradient Descent

ox 7
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Gradient Descent

r=2.9

0y
5o 0
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Gradient Descent
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Gradient Descent
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Gradient Descent

<{am

|
S

k -3' -2'

x5

=1

Tyl = T — 1

Stefan Lattner, Introduction to Deep Learning, Al-PHI Meetup, Spring 2024

B




Gradient Descent

Tyl = T — 1
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Gradient Descent

Tyl = T — 1
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Gradient Descent
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Gradient Descent

Lt4+1 = Lt — 0.5
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Gradient Descent

= —0.29

Lt4+1 = Lt — 0.5
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Gradient Descent

oy = 0.01

L4+l — Tt — 0.1
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Gradient Descent
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Gradient Descent

For any differentiable function, we can ask how to change any parameter in order to
decrease the function.

E.g., for

y = c(Wx + b)
e = abs(y —§)

where W and b are the parameters.
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Backpropagation
®
Average over all training examples

Cost of

one example
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Backpropagation

)
Average over all training examples
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Backpropagation (Stochastic Gradient Descent)

e Dataset
e Sample N random examples: Minibatch

e Foreachexample:
o  Compute output of Network
o  Compute error
o Compute how to change Weights and Biases to decrease error: Diffs/”Gradients”
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Backpropagation (Stochastic Gradient Descent)

e Dataset
e Sample N random examples: Minibatch
e Foreachexample:

o Compute output of Network

o Compute error
o Compute how to change Weights and Biases to decrease error: Diffs/”Gradients”

e After having done that for the Minibatch

o Calculate mean of all gradients and apply the changes to the parameters
o  Usually gradients are multiplied by a learning rate, e.g., lr=0.0001
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Backpropagation (Stochastic Gradient Descent)

e Main Problems:

Too big or too small gradients!
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Backpropagation

e LeNet5uses Tanh Tanh

activation function

Yann LeCun

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner:
Gradient-based learning applied to document recognition. Proc. IEEE 86(11): 2278-2324 (1998)
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Backpropagation

e LeNet5uses Tanh Tanh

activation function

Yann LeCun

Gradient=0

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner:
Gradient-based learning applied to document recognition. Proc. IEEE 86(11): 2278-2324 (1998)
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Backpropagation

Main problems training Deep Learning models

e Vanishing Gradients

o  Through saturated non-linearities
e Exploding Gradients

o  Non-careful initialization of weights

o  Through training dynamics (too high learning rate / exploding weights/biases)
e Technical Limitations

o  Hardware restrictions

o  Compute
o Memory
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Backpropagation

e David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.

Learning Representations by back-propagating errors, Nature, 1986
e Nowadays all NNs are trained that way
e Enabled the rise of Neural Networks!

e Now the only problems left were
o exploding/vanishing gradients
o compute limitations and
o insufficient data)

Geoffrey Hinton
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Going Deeper

How to overcome training limitations




Deep Architectures

We want gradients of similar magnitudes for parameters of all Layers!

S

3x3 conv, 512, /2

34-layer residual
Image
| 7xconv, 64,72 |
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Activation Functions

Perceptron Sigmoid
1.0 P 1.01 £
0.8+
0.6 O(2)
0.4
0.2
0.0 - : ;
-5 0 5
Leaky ReLLU ELU
0 g 0zt 5 6 e*—1if z
4 11 st 5%0 41 2if2>0
2 2] 2
| 0
0- 01— . | . . .
-5 0 5 -5 0 5
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0.201 6 .
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0.101
0.051 2
(.00 0
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Activation Functions

Perceptron

o(2)

¢
ReLU

max(0, 2)

0.201
0.157
0.101
0.051

0.00-

5 0 5
Leaky ReLLU

[T N R N =

0zt 5
zif2>0

Softplus

= B N R =
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Tanh

tanh(z)

Geoffrey Hinton

ELU
gf= ] itz
zifz>0

(=T S B =

Vinod Nair, Geoffrey E. Hinton:
Rectified Linear Units Improve Restricted
Boltzmann Machines. ICML 2010: 807-814


https://dblp.org/pid/20/5283.html
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Activation Functions

| Neural Network Activation Functions: a small subset!

y

max(0, x)

_@y

l + |mh(\“-:‘-) x ~v|,“

+(\p—1

-]u;,ll+(\p1fl xtanh ('é]ﬂ.,il exp( l:n

HardSwish Sigmoid
0ifx 1

rifz>3
(x + 3)/6 otherwise 1+ e\p(—w)

Tanh _f— Hard tanh

ritxr >0

a(rexpr —1) if r <

rifr>a

bife<b
tanh(x) z otherwise
Tanh Shrink Soft Shrink
T—-ANifx >\
s+ Aifz <=\
x — tanh(a

0 otherwise
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PRelU

N

max(0, z)

SELU

\

a(max(0, x)+
min(0. 3(expx — 1)))

RRelU

\

zifr>0

ar if r < 0 with a ~ R(1, u)

1+ |z|

Hard Sigmoid
0if :/—
Lif g >3

/6 + 1/2 otherwise

Hard Shrink
Tifx> A
zifr <=\

0 otherwise



Activation Functions

Why do we need them?

e Theoretical: Universal function approximators
o Introduce non-linearities

e Practical:
o E.g., Restrict output between [0, 1] or [-1, 1]
o  Training dynamics
m (e.g., SELU: Scaled ELUs) converge to standardized distributions
m Vanishing gradients
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Other improvements

We want gradients of similar magnitudes for parameters of all Layers!

S

3x3 conv, 512, /2

34-layer residual
Image
| 7xconv, 64,72 |
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Deep Learning

e Became popular as Neural Networks actually became deep

o approx.2010-2015

152 layers
A
A\
\
\
\
\
\
\
22 layers [ 19 Iayers '
\ 6.7

. l___ I 8 layers H 8 layers | , shallow

ILSVRC'1S  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet
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Other improvements

e Weight regularization (1992)
o Additional regularization term
o  Keeping weights small
o Improve Generalization

e Dropout (2012)
o  Preventing overfitting and allows for over-complete networks
o  Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, llya Sutskever, Ruslan Salakhutdinov:
Improving neural networks by preventing co-adaptation of feature detectors. CoRR abs/1207.0580
(2012)

Geoffrey Hinton

Y‘\ YAL Y‘L
o  Generalization!
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Other improvements (2015!)

e Skip Connections (ResNet, 2015):
o  Bypassone or more layers
o  Combating vanishing gradient problem
o Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:
Deep Residual Learning for Image Recognition. CVPR 2016: 770-778
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: s RN i s
B it 3 |3 2 2| (3 : £
- Ei

Stefan Lattner, Introduction to Deep Learning, Al-PHI Meetup, Spring 2024



Other improvements (2015!)

e Batch Normalization (2015):

o Standarized input to each layer (zero mean, unit variance)

o Sergey loffe, Christian Szegedy:
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. ICML
2015: 448-456

(a) Without dropout (b) Dropout with p = 0.5.
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Other improvements (2015!)

e Heinitialization (2015):

o Aweightinitialization method that considers the size of the previous layer

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun:

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. ICCV
2015:1026-1034

(@)

Inputs  Weights Net input Activation
function function
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Other improvements

e Attention Mechanisms (~2017)

o Improve capacity to handle long-range dependencies
o Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, Illia Polosukhin: Attention is All you Need. NIPS 2017: 5998-6008

e Gradient Checkpointing (2023)

o Trades compute time for memory requirement
o  Overcome technical limitation (limited memory)
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NN Evolution - Part 1 (Basics) Summary

Perceptron (1957)

Multi-Layer Perceptron (1958)
Convolutional Neural Networks (1982/1998)
Backpropagation (1986)

Going Deeper (2010-2015)

Non-linearities

Dropout

Skip Connections

Batch Norm

Initialization

O O O O O
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